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A CURVE FITTING METHOD FOR

SOLVING THE FLUTTER EQUATION



CHAPTER I

INTRODUCTION

In the optimization of a complex structure such as an airplane,

one of the usual design constraints is that of flutter. Flutter is a

hazardous phenomenon, for which the physics is not fully understood,

in which an elastic body in an airstream, e.g. an airplane wing,

becomes dynamically unstable. The first flutter investigation occurred

about 1915, but an accurate theory of aircraft structure flutter was

not formulated until 1935. Engineers in the recent past were able to

design flutter free airplanes with the existing established techniques,

but these methods without the digital computer meant long cumbersome

hand calculations. As always time consumption meant money consumption,

and with the age of new computers automated methods of flutter analysis

were needed. Automated methods have now been applied to the different

methods of flutter analysis, but these are basically iterative

techniques that could be time consuming and therefore costly.

It is the objective of the author, not to extend the theory of

flutter; but to present a flutter velocity extraction technique which

is relatively fast with respect to digital computational time and is

very simple. The flutter analysis presented here is a part of a large

optimization computer program that optimizes a simple three bay canti-

levered box beam (Figure 9) for minimum mass subject to the flutter

velocity constraint. The box beam was used since many airplane wings

resemble a box beam structure. Two examples are presented. Case I is



the system resulting from what will be defined as the minimum variable

parameters (P(1) = PMIN(I)). Case 2 is the system resulting from a

set of variable parameters which are six times the minimum parameters

(P(I) = PMIN(I) x 6). These variable parameters (cross sectional areas,

thicknesses, etc.) are listed in Table III of the Appendix.

Before explaining this method of flutter analysis a better

understanding of the overall problem of flutter should first be

developed. The following chapter contains a discussion of flutter

for a system with single degree of freedom followed by the broader

concept of flutter for a system with many degrees of freedom. The

formulation of the basic flutter equation is also presented in this

chapter. The classical or established methods of flutter analysis,

recent work in the area of flutter, and the statement of the problem

are given in Chapter Ill. Chapter IV presents the derivatives of the

eigenvalues A with respect to the reduced frequency k, which could

have been derived directly from a paper by Rudisill and Bhatia (11),

but which are given in detail since some of the complexity and under-

standing might be taken from the problem. These derivatives make

possible the computerized flutter technique explained in Chapter V.

The results and conclusions of this technique are also given at the

end of Chapter V.



CHAPTER II

FLUTTER AND THE FORMULATION OF THE FLUTTER EQUATION

As defined in the Introduction, flutter is a hazardous phenomenon

in which an elastic body in an airstream becomes dynamically unstable.

The elastic bending of the wing is such that energy is added to the

structure faster than it can be dissipated. The flutter speed Vf and

the frequency wf are the lowest airspeed and the corresponding circular

frequency of oscillation, respectively, at which a given structure

flying under given atmospheric conditions will exhibit sustained simple

harmonic oscillations (1, p. 5). Flight at velocities above the flutter

airspeed will cause divergent oscillations or damage to the structure,

while airspeeds below Vf represent stable conditions. The flutter

speed is therefore a condition of neutral stability for the system.

Theoretical flutter analysis many times consists of assuming in

advance that all dependent variables are porportional to eiwt where w

is a real frequency and i= (-1) 1 /2 Combinations of the velocity V and

the frequency w for which this occurs must be found. This double com-

bination thus leads to a complex or double eigenvalue problem, with

two characteristic numbers determining the airspeed and the frequency.

The simpler analogous situation is the free vibration of a linear

structure in a vacuum, which is a real or single eigenvalue problem.

In the past, flutter predictions have been made by many different

methods. Some of the methods used were analog simulation, scaled

dynamic models in wind tunnels and flight testing of full scale models



by pilots. The last method requires that the airplane be flown at

the predicted flutter velocity. The excitation of the structure at

this speed sometimes causes divergent oscillations which could mean

death to the pilot.

Single Degree of Freedom

The flutter problem discussed in this paper is one for a

structure with many degrees of freedom; therefore, a simple system

will first be explained. Bisplinghoff (2) considers the example of

a rigid two dimensional airfoil in Figure 1. The airfoil is hinged

at its leading edge so that it is elastically restrained from rotating

about its leading edge due to the torsional spring with a spring con-

stant equal to Ka ft-lb/rad. The unstretched position of the spring

corresponds to a zero angle of attack a. The equation of motion for

this single degree of freedom system is

I + K = M 2-1a a y

where

- = moment of inertia about the leading edge

My = aerodynamic moment due to a(t)

a = angle of attack and

Ka = spring constant.

In order to produce flutter for this simple problem, some

unrealistic assumptions must be made. These assumptions are that the

air density p will be very small and the air foil will be heavily



weighted. First solve for the flutter condition by assuming as a

solution for equation (2-1) the following,

a = a0 e  2-2

where a is a constant angular amplitude displacement. Substituting

equation (2-2) into equation (2-1) yields,

- .2 2 iot - iwt
I w e ) + K (o

e  )= My. 2-3

4 2- iwtUpon dividing equation (2-3) by rpb w a e , where b is the reference

semichord, the result is

'I0 2
S  [- (-) ]+m = 0, 2-4

Trpb y
K a 2

where (i)w2 is the natural frequency of torsional vibration in a
a 4 2- iwt

vacuum and m = M /rrpb w a e. represents the dimensionless aerodynamic

coefficients. For a thin airfoil with small harmonic motion in two

dimensional flow m may be written asy-

m = M + 1/2(L + 1/2) + 1/4 (Lh) 2-5

where M , La, and Lh are complex functions of the reduced frequency k.

The quantity is therefore a complex function and can be split into

real and imaginary parts,

I a a 2
Re(m ) = a ) - 1] 2-6

lpb

Im(m ) = 0. 2-7

From equations (2-6) and (2-7) flutter occurs for the value of

the reduced frequency k for which the out-of-phase component of the
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K

Leading Edge

2b

K = spring constaint of torsional spring
b = semichord

a = angle of attack

V = velocity of airstream

Figure 1. Rigid Two-Dimensional Airfoil Restrained about
its Leading Edge.



aerodynamic moment Im(m ), will vanish, provided that the
y

corresponding in-phase part, Re(m ), is of such magnitude that equation

(2-6) yields a pure real flutter frequency. The out-of-phase component

Im(m ) is the only damping or instability for the airfoil. For Im(my)
y y

less than zero or an m which lags the simple harmonic motion, energy
y

is removed from the oscillations, resulting in damping of the airfoil.

If Im(m ) is greater than zero then divergent oscillations result with
y

energy added to the airfoil.

A System of Many Degrees of Freedom

By the finite element method a complex structure with many

degrees of freedom is described as an assembly of structural elements

connected by discrete or continuous attachments, and the displacements

at nodes, including angular displacements, are represented as the

actual displacements on the continuous structure. The interaction

forces, including bending moments and torques between the discrete

attachments, are represented as discrete joint forces. Figure 2

shows how a cantilevered beam would be represented using the finite

element method. The applied forces P1, P2, the reaction force Pr, the

applied moments M1, M2, and the reaction moment Mr are replaced by

discrete forces, MI Y1, M2, Y2 M Y3 M4' Y 4, and nodal displacements

vI, 0l, v2 ' 62, v3 s 3, V4 , 04 at nodes (1), (2), and (3).

For the system with many degrees of freedom and therefore many

elements the elastic and inertia properties of these elements are

determined in matrix form. It is from these properties that the
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r P P2

M M M2

Y1 V 1  Y2 v 2 Y3 v3  Y '

M 1I 2 2 M3 , 4, e

Figure 2. Discrete Element Representation of a Cantilevered
Beam.



matrix equations for static or dynamic equilibrium are derived. The

motion of a discrete and linearly elastic system can be expressed in

the form (11)

[M]{i} + [K]{U} ={P} 2-8

where,

{U} = n x I vector representing nodal displacements for the

assembled structure, referred to a global coordinate system,

{U} = d2{U}/dt2 = n x I vector representing nodal accelerations,

[K] =n x n stiffness matrix for the complete structure cor-

responding to displacements {U},

{P} = n x I vector representing the total applied forces at the

nodes,. corresponding to the nodes by {U}, and

n = the number of degrees of freedom for the structure.

As with the single degree of freedom system the theoretical flutter

analysis for many degrees of freedom consists of finding combinations

of the airspeed V and the circular frequency of oscillation w for which

the out-of-phase component of the imaginary part of the aerodynamic

moment vanishes, producing simple harmonic motion. Based on the

assumption of simple harmonic motion, the displacement vector {U}

and the acceleration vector {U} may be expressed in terms of a constant

amplitude vector {UO } as

{UI = {UO } e it 2-9

and

= 2 {Uo} eiwt{U} = {m u0}mi



10

The applied loads, P(t), may be expressed as

P(t) = 2pb4 L [A]U} 2-11

where p, b, [A], and L are the air density, semichord, air force

matrix, and span length respectively. Substitution of equations

(2-10) and (2-11) into equation (2-8) yields,

2 it 2 4
-w e [M]{UO } + [K] {U} = w pb L [A]{U} 2-12

Equation (2-12) may be written as

-w2[M]{U} + [K]{U} = 2pb 4 L [A]{U} 2-13

Finally equation (2-13) may be written as,

[[K] - X[M] + c[A])] {U} ={0O} 2-14

4 2
where c = pb L and X= w . Here X is referred to as the eigenvalue of

equation (2-14). Equation (2-14) is the fundamental equation of

flutter.

The stiffness matrix K and the inertia matrix M are functions of

the variable parameters (cross sectional areas, thicknesses, diameters

squared, etc.). The air force matrix A is a complex function of the

reduced frequency k, the air density, the mach number, and the semi-

chord b. The reduced frequency k is defined by the relation,

k = bw/Vf

where Vf is the flutter velocity. The matrices K and M are symmetric

while matrix A is not.

For a nontrivial solution of equation (2-14) the flutter

determinant I[K] -X([M] + c[A])I must be equal to zero. The known

quantities of the determinant are matrices K and M which are determined



from the variable parameters of the structure and therefore the

above determinant yields a polynomial in X(=w 2) with unknown complex

coefficients which are in general functions of the.reduced frequency

k and mach number.- The theory used for formulation of the air force

matrix A for this paper is that of Theodorsen for subsonic incompress-

ible flow. The use of this particular theory yields a polynomial from

the flutter determinant which is a function of the reduced frequency

k only.

Real values of the reduced frequency k are assumed and the

corresponding values of the eigenvalues are computed for which the

flutter determinant is zero. A system with n degrees of freedom will

have n distinct complex values of X corresponding to an assumed value

of the reduced frequency k, if there are no repeated roots. Repeated

roots are seldom encountered in a structural system. The flutter

velocity analysis consists of finding values of the reduced frequency

for which the imaginary part of the eigenvalues will equal zero. 'The

flutter velocity is then computed from the following relation

Vf = bw/k 2-15

It is seen from equation (2-15) that although a value of 1/k

may yield a real value for the eigenvalue X, it may not be the lowest

flutter velocity, since Vf is also a function of the circular frequency

of oscillation w. The semichord b will be a constant. Thus, the

lowest of the flutter velocities must be found for the system. In

practice the lowest flutter velocity is usually found by checking only
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the first three to five flutter velocities for increasing values of

I/k. No proof that this is always the case has ever been presented

in the flutter literature, however.
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CHAPTER III

WORK BY OTHERS

Lawrence and Jackson (5) discuss the flutter analysis methods

classified as the American approach, the British approach, and the

Richardson approach. In their paper they have shown the results of

the three methods, compared them, and given their conclusions. It

is the purpose of the author to discuss in this chapter what may be

considered the classical techniques of flutter analysis and then

briefly summarize the recent state of the art. The American and

British techniques will be considered as the classical methods of

analysis. The different methods of flutter analysis commonly used

agree in regard to critical flutter airspeeds, provided the same basic

data are used, but give different results for the stability decay

rates at other airspeeds.

British Approach

In the United Kingdom the flutter equation is written in the

form,

Md 2 + [V[EDa + D]] d{U} + 2[Ka + Ks {U}=O 3-1dr d + V aKI

where

[M] = structural and aerodynamic inertia matrix,

{U} = eigenvectors or column matrix of generalized coordinates,

V = airspeed
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V0 = reference airspeed,

v = V/VO,

L = span length,

T = Vot/L,

[Da ] = aerodynamic damping matrix,

[Ds ] = structural damping matrix,

[K a = aerodynamic stiffness matrix, and

[Ks] = structural stiffness matrix.

A solution of the form {U} = {U} e is assumed where {U} is a

constant amplitude vector and ,. are the resulting complex eigenvalues

of the form

X. =. + iw.
J J J

where p is the exponential growth rate and w is the circular frequency

of oscillation. The system is stable if i is greater than zero and

the state of flutter occurs when i = 0, orX= i, or the eigenvalue

is purely imaginary. Equation (3-1) holds only for simple harmonic

motion.

The aerodynamic stiffness matrix Ka, and the aerodynamic damping

matrix Da are functions of the frequency v = w/V, and usually the mach

number. The structural damping matrix D is frequently set equal to

zero since it is negligible compared with damping matrix D due to the
a

aerodynamic forces. Solutions of equation (3-1) are found by

assuming a value of v for the calculation of matrices D and K , anda a

then solving for the eigenvalues A. from equation (3-1). The eigenvalues

in general are not purely imaginary, and in general the computed value
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of V= w/V, where w comes from the imaginary part of the computed

complex eigenvalue, do not line up or equal each other. When the

computed eigenvalue is pure imaginary • ( = 0), then the assumed 7

and the computed v will line up.

In order to find the lined-up values of V a graph is plotted of

w obtained from the eigenvalues against. V, and the intersections of

each curve with the line w = vV, where v is the assumed value of the

frequency which was used originally to compute matrices D and K
a a

give the lined-up values of frequency w and airspeed V. This method

is graphically represented in Figure 3. The lowest critical velocity

from the lined-up values will be the flutter velocity.

The main disadvantage of this method is that the eigenvalues

for a large range of assumed frequency v values must be calculated

before lined-up values can be found. Therefore, the British method

will in general be time consuming and costly for application on the

computer.

American Approach

The American method of analysis, commonly referred to as the

V-g method, is quite different from that of the United Kingdom. The

flutter equation is formulated as follows,

iV[Da ]  -2
[[M] - - [K ] -1 + ig [K ]] {} = 0 3-2

where 1/7 = V/w. It is seen from equation (3-2) that the structural

damping matrix Ds is completely ignored and g, a fictitious structural
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damping is introduced. The structural damping will actually be

represented by (g/w)[K s] and is supposedly just sufficient to maintain

simple harmonic motion. The solution {U} = {U} e i' T is postulated

leading to an eigenvalue problem to determine the complex eigenvalues.

Once again an assumed value of 7 which is used for calculating

the aerodynamic damping matrix Da and the aerodynamic stiffness matrix

Ka yields in general the complex eigenvalues from equation (3-2). By

separation of the real and imaginary parts of the eigenvalue X, g and

w may be obtained. The corresponding velocity V is obtained from the

relation V = 7/w. A negative value of g means that the system is

damped and therefore, stable. The critical flutter airspeed occurs

when g = 0. Figure 4 shows a graphical representation of the

American method. It is seen from Figure 4 that the solutions for a

particular value of w/V lie on a straight line through the origin of

the w-V plane. It is also seen that lined-up values of 7 play no

part in this method as compared to the British method. Further com-

parison with the British method shows that all computed values of the

frequency v correspond exactly with the assumed. values of v. Once

again the American approach calls for an iterative method varying v

to find eigenvalues which will yield g = 0. From the American formu-

lation of the flutter equation a plotting process to find zero values

of g would be time consuming and costly, but the American approach

does have the advantage of not having to find the lined-up values of

V.
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Recent Work

Richardson's method is basically an extension of flutter theory

to give correct subcritical decay rates for a system with many

degrees of freedom and multidimensional compressible aerodynamic

forces. Richardson (8) formulates the general motion of a system

as follows:

[[M]- [M d2 { + U} 2 [A(T - )]d {U(T ) } dT 3-3
- 2 s o dT o

dr o o

where the matrix A(T) is the indicial aerodynamic matrix, and is

related to the aerodynamic damping matrix Da, the aerodynamic stiff-

ness matrix Ka, and the aerodynamic inertia matrix MI. The indicial

aerodynamic matrix A(T) is approximated by a power series expansion

which was a main point by Richardson in this approach.

The solution of equation (3-3) by Richardson results in m

coefficients of the matrices Da and Ka, which represent the unsteady

state of the growth of lift functions for an airplane travelling at

speed V in air or the coefficients resulting from unsteady aerodynamic

forces. The solution of equation (3-3) results in n(m + 1) roots

instead of the usual n complex roots corresponding to n degrees of

freedom encountered in the American and British methods. The n

roots represent the usual decayed oscillations and the nm roots are

negative real roots representing exponential decays. The Richardson

method, like the British and American methods, gives accurate critical

airspeeds for the same basic data, but below the critical airspeed
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the British and American methods are not as accurate as the Richardson

method for computation of the decay rate. Of the three methods the

American method must be considered the simplest to use for prediction

of the flutter velocity.

Others that have recently worked with flutter are Hassig (3) and

Phoa (7). Hassig applies a determinant iteration method to the British

method of solution. In his formulation of the flutter equation he

includes transfer functions for application to hydraulic controls and

automatic controls systems. The method is an iterative automatic

search procedure for the flutter velocity. Phoa uses Nyquisit's

technique for his computerized technique. His approach shows the

applicability to systems which include feedback control systems.

Although automated, the method is also an iterative procedure.

Statement of the Problem

Although automated techniques (Hassig, Phoa) have been applied

to the various methods of flutter calculation, these methods are

iterative procedures that could be time consuming and therefore,

costly. Hassig's determinant method, however, must be considered as

a more direct method of solution than the method used by Phoa.

It is the objective of the author, not to extend the theory of

flutter, but to find a direct method of solution for the flutter

velocity that is fast and simple, and apply this method to the

optimization of a cantilevered box beam for minimum mass due to a

flutter velocity constraint.
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Rudisill and Bhatia (11) have derived the second derivatives of.

the flutter velocity from the basic flutter equation (2-14). From

their work and this formulation of the flutter equation (2-14) the

first and second derivatives of the eigenvalues with respect to the

reduced frequency (d.j/dk, d2X./dk2) can easily be derived. With

these derivatives it is the objective of the author to apply a curve

fitting technique for which the flutter velocity could be found

directly and simply. The expressions for the first and second

derivatives of the eigenvalues with respect to the reduced frequency

could simply be written down, but the author believes that some of

the understanding and difficulty would be taken from the problem.

Therefore, these expressions are derived in the following chapter.



23

CHAPTER IV

FIRST AND SECOND DERIVATIVES OF THE EIGENVALUES

In Chapter II it was seen that the fundamental flutter equation

was written as,

[[K] - A([M] + c[A])]{U} = 0 2-15

For future derivation equation (2-15) will be written as,

[[K] - X.([M] + [A])]{U.} 0 4-1
J J

where the notation [A] has replaced c[A] since c = pb L is a constant

coefficient of matrix A. The subscript j indicates there will be n

eigenvalues X. and n corresponding eigenvectors U. for a single solu-

tion of the flutter equation (4-1) where n is the order of matrices

K, M, and A.

From equation (4-1) it is seen that [[K] - A.([M] + [A])] is

actually a composite matrix of the stiffness, mass, and air force

matrices. Transposing this matrix yields

[[K] - .([M+A)T = + [A])] = [[K]T X.([M] + [A]T)] 4-2
J J

Since-the stiffness and mass matrices are symmetric,

[K]T = [K] and [M] T = [M].

The resulting eigenvectors from the transposed matrix (4-2) will be

denoted as V.. The flutter equation may now be written as,

I[K] - j(lM] + (A]T)]{V} = 0

Transposing this equation gives,

{vj }T[[K] - Xj([M] + [A))] = 0 4-3
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For a linearly elastic structure such as the box beam, the dis-

placement at a node 6. can be related to the applied forces by the

following relation,

6. = i F + ci2F2 + + + C inF 4-4il 1 22 inn

The coefficients cin are known as the deflection influence coefficients.

In matrix notation equation (4-4) becomes

{6} = [C]{F} 4-5

Matrix C is known as the matrix of deflection influence coefficients

or is many times referred to as the overall structure flexibility

matrix. If the inverse of matrix C exists then the applied forces may

be found in terms of the displacements. In matrix equation form this

becomes

{F} = [C]-I{6 4-6

If C] -1 exists then [C] - = [K] is the stiffness matrix. This

relation is also true for the flutter equation (4-1).

Premultiplying equation (4-1) by the flexibility matrix C yields,

[[I] - X.[C]([M] + [A])]{U.} = 0 4-7
J J

In order to get equation (4-7) in a form used for later differentiation

define,

x. = 1/). 11 2  4-8
J J

Multiplying equation (4-7) by - . yields,

[-1T[1] + [C]([M] + [A])){U} = 0 4-9
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Rearranging the terms of equation (4-9) yields,

[[CI([M] + [A]) - 1. I]]{U.= 0 4-10
J J

which will be the form of the flutter equation to be differentiated.

For digital computational purposes this formulation of the flutter

equation was found to be the fastest and the simplest. Thus, the

following equation develops from equation (4-10),

{vj.T[[c]([M] + [A]) - (. [11] = 0 4-11
J J

With reference to equation (4-11) let

[F.] = [[C]([M] + [A]) - . [I]] 4-12
J J

From equation (4-12) the flutter equation may be written as

[F.]{U.} = 0 4-13J J

and

{v.} TF.] = 0 4-14
J J

Differentiating equation (4-13) with respect to the reduced frequency

k the resulting equation is,

dEF.] d{U.}- {U.} + [F] - = O 4-15
dk J J dk

Premultiplying equation (4-15) by {V.}T yields
J

dlF.] d{U.}
{VJ} T  dk {U.} + {v. } F ] - = 0 4-16

J dk j j j dk

From equation (4-14) it is seen that the second term of equation (4-16)

vanishes. The result is,

d[F.]
{V }T d {U.} = 0 4-17

j dk j
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The flexibility matrix C and the inertia matrix M are functions

of the variable parameters only and not the reduced frequency k.

The air force matrix A and the eigenvalues X. are however functions

of the reduced frequency. Differentiation of equation (4-12) with

respect to the reduced frequency k will therefore yield

dX.
d[FJ]/dk = [C] d[Adk dJ- [1] 4-18

Substituting this result into equation (4-17), the following

result is obtained,

T c] d[A] }T [I{U } = 0 4-19dk j dk

Solving equation (4-19) for the first derivative of the eigenvalues
dX.

with respect to the reduced frequency, , gives

dk

d,. {V.}T[C] d[A] {U.,
Sdk 

4-20dV.}T [I]{Uj}

Since {V.}T[I]{U.} = {V.}T{U.}, equation (4-20) may be rewritten as

dX. {V.) [c] d[A) {U.}
k= dk 4-21

dk {V {u.}

The expression for the first derivative may further be simplified

by making the associated row vector V.T orthonormal with respect to

the eigenvectors U. or

J
{V.} T{U.} = I 4-22
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where {7.}T is orthonormal. The orthonormalization will be explained

in the following manipulations.

Consider the following equations,

{v.} [[c]([M] + [A]) - . [11]] = 0 4-23J J

and

[[C]([M] + [A]) -. 1[I]]{U.} = 0 4-24
I J

where X. and X. are eigenvalues of the respective equations. Post-J I

multiplying equation (4-23) by {U.} and premultiplying equation (4-24)
T

by {V.}T yields,

V.T[[C]([M] + [A]) - .[I]]{U. = 0 4-25

{v.} T[[]([M] + [A]) - .irl]]{ui} = 0 4-26

Subtracting equation (4-25 from equation (4-26),

{Vj}T(. - 7.)[I]{U.} =0 4-27

is obtained. From equation (4-27) if A. and . are distinct (i j),

then

{V. }T {U.} = 0 4-28

If A. = X. then for the nontrivial solution

{V}T {U.} = d 4-29
J J

where d is a constant. Dividing both sides of equation (4-29) by d

yields,

{.)}T{u.} = 1 4-30J J
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where V. is the orthonormal associated row vector of {U.} with
J J

respect to {U.}. Using this result and applying it to equation (4-21)

the first derivative of the eigenvalues with respect to the reduced

frequency becomes,

d .=d [C ] {U} 4-31
dk -dk

Second Derivative of the Eigenvalue

With Respect to the Reduced Frequency

The starting point for the second derivative will be equation

(4-15) which is,

d[F.] d{U.}
dk{U } + [Fj] =dk =  0 4-15

Differentiating equation (4-15) with respect to the reduced frequency

k,

d2 [F.] d[F.] d{U.) d[F.] d{U.} d {U.1d L{Uj} + - J + [F] = 0 4-32
dkdk dk dk dk dk2

is obtained. Premultiplying equation (4-32) by {V.}T yields,

d2[F.] d[F.] d{U. T dEF.] d{U.}

J dk2  j j dk dk j dk dk

d2{U.}

+{ } [F ] dk = 0 4-33

It was previously shown from equation (4-14) that

{V.} [F.] = 0 4-14
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It is therefore also true that,

{Vi.T [F] = 0 4-34

Grouping terms and usingequation (4-34), equation (4-33) reduces to

the following,

d2[F.] dlF.] dU.}
T {U I + 2{.}T = 0 4-35
J dk2  dk dk

F. was defined as,
J

[F] = [[C]([M] + [A]) - X.[I]] 4-12

Differentiating F with respect to the reduced frequency k, yields,

d[F.] d.
-- " = [Cd[A] 8 J i ] 4-36dk dk dk

and

2 2-d2 [F.1 2  d2-
2 = (C [1] 4-37

dk dk dk

Substituting dlFj]/dk and d2 Fj]./dk 2 into equation (4-35) yields,
d2-.

S}T [[c2A]  - {U} + 2 }T d[A] dX. d{Uj10- Jkk [1]]{u.} + 2{V.1 [[ _ __cL[- = 
dk2  dk2  dk dk dk

4-38

Solving equation (4-38) for d27./dk2 , the resulting expression is,
J J

T d[A] dA. d{U.} T d2[A]27.  2{V.. I[c] d 'L[I]] j + .[{U.}j dk dk dk j--dk J
2 T 4-39dk 2  • .T[I]U

Since the denominator is unity the expression for the second derivative

becomes,
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2-d2 . dA. d{U.1 T 2
= 2{ }T[[C]d d4 1] dk + {v. C U 4-40

dk2  k dk dk J dk2

The only unknown of equation (4-40) is d{U.}/dk, which may be

written as a linear combination of vectors Uh,

d{U.} n
J = aj kh {Uh}  4-41

dk h=1 -h

where ajk h is a scalar quantity and Uh are eigenvectors of the n

eigenvectors which form a complete set of vectors in a n vector

space. Substitution of equation (4-41) into equation (4-15) yields,

d[F. n
J{Uj) + [Fj] I ajkh {Uh = 0 4-42dk h=l jkhh

Premultiplying equation (4-42) by (V. T where i # j yields,

Sd[F.] n
{V -dk {U I + {V }T[Fj] 1 ajk h {Uh) = 0 4-43

h=l

From equation (4-43)

i T [Fj] = {V }Tl[[]([M] + [A])- X.[I]] 4-44

is obtained. Postmultiplication by {Uh} yields,

{V}T [Fj]{Uh = {V IT[[C]([M] + (A]) - 7.[I]]{Uh 4-45

From the basic flutter equation (4-10) the following relation may be

written,

[[C]([M] + [A])]{Uj} = I.[l]{U.} 4-46
J J J
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--T

Premultiplication by {V.} of equation (4-46) yields,

{VT [[c]([M] + [A])]{U. ) = {vj.TT.[]{U.j}, 4-47

but the quantity on the right side of equation (4-47) yields,

T,
{V.}T .[I]{U.} = X.

J J J J

Tfrom the orthonormality of {V.} with respect to {U.}. Thus, it is

seen that,

iV T [C]([M + (A]) - 3[]]{U} = {V.}T([c(([M + [A])]{U.}

T4-48{ V1. A 111 . 4{4u8
J I J

or,

{-.ITIF{U = X. - - 4-49

Applying the above relation to equation (4-43) gives

dEF.]
I{V. T  dk {Uj} + ajki(3 - ) = 0
a dk j jki a j

for h = i, since {V. }[F.]{Uh } = C for h # i. Solving for ajki yields,

- (V.T d[FJ] {U.}
i dk j

ajki - - 4-50

where i # j. The following relations are shown to give the case

when i = j or the expression for ajkj' even though these coefficients

will be seen to vanish in later derivations.

It was shown previously in equation (4-30) that {V.} {U.} = 1.

It can also be shown in a similar manner that {U.} can be normalized
J

so that
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{U.}T{u.} = l, 4-51
J J

and that

fUJT{U = constant = .jh 4-52

Differentiating equation (4-51) with respect to the reduced frequency

k yields,

d{U.} T d{U.}
-J {U } + {U.}T ..- = 0 4-53dk J J dk

From equation (4-41) it was seen that d{U.}/dk could be written as
J

linear combination of'vectors {Uh), thus the following relation for

d{U.}T/dk is,

T
d{U. } n

Zd = ajkh {Uh T  4-54dk h=ljkh

Substituting equations (4-41) and (4-54) into equation (4-53) yields,

n n
h ajkh {Uh}T{U} + Z ajkh {U }T{u h) =0 4-55

Factoring out the ajk j coefficients from this equation the result is

n n T
h. ajkh {Uh}T) {U + E ajkh {U TIUh I + 2ajkj 56h=lh- k 0  4-6
h#j hyj

Since {Uh T{U. = bhj and {Uj}T{Uh = bjh, the expression for ajkj is,

ajkj =- (lajkh(bhj + bjh)) 4-57

h#j
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The second derivative of the eigenvalues with respect to the

reduced frequency was expressed as,

2-
-=d 2{.}T[[C A] d [I]] + .}Tc [ A] {U.} 4-40
2 dk dk dk dk2dk dk

d{U.}
Let us focus attention to the terms containing -- of equation

(4-40),

d-. d{U.} d[F.] d{U.4
2{V.}T dk -[1 = 2{.}~ - 4-62S[ dk dk dk j dk dk

Substitution of the expression for the first derivative of the

eigenvalues with respect to the reduced frequency into equation (4-62)

yields,

d[F.] d{U.} d{U.}
2{7.}T T d[A1 T 2 {Cd[A] U {U.}[I] 4-63

S dk dk dk dkdk

where {.}[C] d[A] {U. is a scalar.j dk j
-T d[A]Since {7V [C dk {Uj} is a scalar, equation (4-63) -may be written as

Td[F.] d{U.} d{U.} d{U.}
2{.} - a- = 2{V .}TC]d(A I - {U.}{v.} T  }} 4-64

j dk dk dk dk j j dk

It was shown previously that {.} T{U.} = 1 from equation (4-30).

Taking the transpose of equation (4-30) yields

{Uj) {7.}= 1 4-65
J J

It is also, therefore, true that,

T d{U. d{U.T 4-66

J dk dk j
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d{U.}
With this result dk may be written as

d{U. n
= Z a {Uh} I + a {U.} 4-58dk h=l jkh jkj

h#j

or substituting the expressions for ajk h and ajk j yields,

d[F]
d{U.} n {h T  J {U.h{U ) n

S= dk ha ( b h j + b. )){U.} 4-59dk h -2 h=ljkh jhh= Ah - . h=1
h#j h h#j

d{U.}T

In a similar manner d. may be written as,
dk

T { T± I T T
d{U.}T  n Vh dk {Uj }T {Uh I n T. -60

z L - T Z(h= a. (bhj + bjh)){U. . 4-60
dk h=I -hA. h=

h=1 h#j

Postmultiplying equation (4-59) by {U.} T and premultiplying equation

(4-60) by {U.} and subtracting the two equations the result is,

d[F.]
d{U.} d{U .T n {V T JU.{U }{U.I
---- {uj u- I. =- h dk j h 4-61

dk j dk

n {Vh T- - {UI}{u.}T{Uh T
+ dkJ j
h=l h - X.
h#j

From equation (4-61) it is seen that the coefficients aj j have
vanished from further manipulations.k

vanished from further manipulations.
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Substitution of {U.} T{V} for "I" and the expression for {V }Td{UJ}/dk,

q. uation (4-64) becomes,

Td[ F. U. d[A dU.} T d{U.}T
dk dk dk dk j J dkJ

4-67

Factoring out {V }, equation (4-67) may be written as,

T d[F.] d{U.} d{U.} d{U.}T

2{V.1 " L {V. d - {__ j d{U.} d{U .}T

Equation (4-61) gives the expression for d{---1 {UT {U. d}--
dk J J dk

Substitution of this equation into equation (4-68) yields,

d[ F.]
T d[F] {U. T Cd[A] n {h T { (-{U.){U.}T

J dk j dk
h=l - A
h#j J

Td(F.]
n {Vh } h IU. ( UU {u h}T+ dk j }{V. 4-69

h=l h - A J
h#j J

It was previously shown that { }T{ u = 0, where i # j. Thus

T-{Uh}{ . = 0 4-70

where h ) j. Equation (4-70) causes the second term of equation (4-69)

to vanish. The resulting equation is,

Sd[F.]

Td[F.] U.}TC]dAJ n V -- {U }{U h
j dk dk k . 4-71

h=l - -
h -j " J
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From equation (4-18) it can be shown that,

T -T- d(A]h U. 4-72
h dk Vh [c] dkU } 4-72

From the result of equation (4-72), equation (4-71) may -be-written --

as,

d[F] d{U.} 2 - T dA

d d{U.k n ({hTC]dA {U ) hjT [C-]d[A {U})
2 1 T k = 2 E J dk dk 4-73

dk h1 . - T
hj J

Substitution of equation (4-73) into equation (4-40) yields the

expression for the second derivative of the eigenvalue with respect

to the reduced frequency as,

2- T d[A] T [A1d x. T 2 UV {-1 [clS{VI.JT ( C] fU. +2 n ({ [}TC] {Uh' }TC] {U}k
2 2 .

dk dk h=l -.
h# J h 4-74

The following chapter explains the author's method of finding the

critical flutter velocity. Without the first and second derivatives

of the eigenvalues with respect to the reduced frequency the method

.used would be impossible.
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CHAPTER V

A COMPUTERIZED CURVE FITTING FLUTTER ANALYSIS

From Chapter IV it was seen that the flutter equation could be

written as,

[[C]([M] + [A]) - .[]]{} = 0 4-10

where C, M, and A were defined as the flexibility, inertia, and air

force matrices, respectively. {U.} were defined as the eigenvectors
J

or a column vector of generalized coordinates. The solution of

equation (4-10) for an assumed value of the reduced frequency k

yielded j complex eigenvalues of the form

A. = /A. = Xj + 1ji 5-1

1 1/2where = - , i = (-1) , and .j represents the imaginary part of

the eigenvalue. The values of P.j are labeled in descending order of

Xj. Each j subscript corresponds to a mode of oscillation.

The eigenvalues A. are a function of the reduced frequency k,

which is a function of the semichord b, the circular frequency of

oscillation w, and the velocity V by the relation,

kw
b V

The eigenvalues can then be said to be a function of b/k or V/w. If

the imaginary part of the eigenvalues j are plotted against v.,

where v. = V /wj a set of typical curves might like the curves of

Figures 5 and 6. Figure 7 gives a representation of a set of typical

Xj curves. It is seen from Figures 5 and 6 that modes 2, 4, and 6
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produce i. curves that cross the v axis. At these points where A.
J J

is pure real or J is zero, flutter will occur. The lowest velocity

corresponding to a pure real. X. will be the critical flutter velocity
J

for the system, where the flutter velocity is computed from the

relation,

Vf = (xj)-1 v. 5-2

From a structural synthesis point of view it is computationally

inefficient to make plots of p. versus v. for each flutter analysis.
J J

Instead of using the plotting procedure, the crossings of .j may be

approximated by fitting cubic or quadratic equations to ip. from com-

puted values of j, d j/dv, and d 2./d2 v. The first and second

derivatives of the eigenvalues with respect to the reduced frequency

were derived in Chapter IV. In order to use the curve fitting

technique, the first and second derivatives of the eigenvalues with

respect to v must be derived.

Let D = b/k, where b is the reference semichord and k is the

reduced frequency. Then,

dD = -2 dk 5-3

or,

d( b
k b 5-4-dk- k 2-
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The first derivative of the eigenvalue with respect to b/k may be

expressed as,

dX. dX.
b dk 5-5

d -k d -k k

where,

d iv T[ C] dC - {U.} 4-31

Since b/k = V/w = v, the expression for the first derivative of the

eigenvalue with respect to v may be written as,

dX. 2
.k - -- d[A]

dv. {j [ - {U } 5-6

Differentiating equation (5-5) with respect to b/k yields,

2- 2- 2-d A. d A. dA. 2 dX 2
S= . dk + d k 5-7

d(2 dv2  dk2  dk b 2

where dk/d(b/k) = -k2/b and d2k/d(b/k)2 = 2k3/b2 . Substitution of the

relations for d7./dk and d2. /dk 2 into equation (5-7) yields,

S= 2k -}T[d[A]{ ---
. d 2 k b2 J d - { U

dv bd

2 2k 2 T cd 2 [A]
+ ( V.) T [c ] d2{U }

n {V-} T[Cd[A1 {U} T[Cd[A] {U.}

+ 2 Z . dk h h dk 5-8
h=l A. - A
h#j J h
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Curve Fitting Technique

.Thej. curves are approximated by cubic equations of the form,

S= A.v + B.v2 + C.3 5-9
J J J J

The graph of cubic equations (5-9) pass through the origin and the

coefficients Aj, Bj, and C. are evaluated such that the curves of

equation (5-9) pass through the points(v ,~ ) and (v, iP.). The first

derivative of J. with respect to v is,
J

dV.2
dv = A. + 2B.v + 3C.v2  5-10

d J J. J

The curves of equation (5-10) pass through the point (vo, dip/dv)
o o

where i 0 and d 0/dv denote values of j and dp.j/dv evaluated at

v = Vo respectively, and Jij denotes i.j evaluated at v =- vo/M, where

M is some large number, say 10 or 100. v0 is an assumed trial value

of v.

The coefficients A., B., and C. are calculated from the

following equations,

o 2 3. = A.v + B.v + C.v 5-11

d* /dv A. + 2B.v + 3C.v 2 5-12J J Jo Jo

..and,

S- -2 -3. = A.v + B.v +C.v 5-13
J J J J
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Using Cramer's rule the coefficients of equation (5-9) may be

expressed in the forms,

4 o -3 -2 2 -2 3 3)DA lV + (2v v- 3v v) + d /dv(v v - vv3 )}/D 5-14

- 3 - 2 -3 o -3 -3
B. = {-2.v + 4(3vv - v ) + dip/dv(v v - vv )}ID 5-15J o o o o0 0

2 o-2 o 2 -2
C. = {ip.v + (v - 2v) + dip./dv(vv - v)/D 5-16

and,

-4 -2 3 -3 2D vv - 2v v + 3v 5-17o o

Since j. is zero at v-= 0, then the other two crossings of tj may be

---found by setting j in equation (5-9) equal to zero, thus

A. + B.v + C.v = 0 5-18

From the quadratic formula the roots may be expressed as,

v = {-B. ( 2 - 4A.C.) 1 /2/2C. 5-19
J J J J j

provided C. is not zero and (B2 - 4A.Cj) is greater than or equal to
J J JJ

zero. If v from equation (5-19) is not pure real and positive then

curve fitting by the use-of-a quadratic equation of the same form as

equation (5-18) may provesuccessful.

The coefficients (A., Bj, Cj) of the quadratic equation,

j =A. + B.v + C.v 5-20

are computed for curves which pass through points (vo, ~ ) and
have first and second derivatives which pass through points (od

have first and second derivatives which pass through points (v old-
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and (v , d 2/dv ), respectively, may be found from the following

equations,

o 2
j = A. + B.v + C.v 5-21J J Jo jo

di.o/dv = B. + 2C.v and, 5-22

20 2d 2./dv = 2C. 5-23

From equations (5:21) through (5-23) the coefficients may be expressed

as,

2C. d2{ /dv2  5-24
J J

B. = dio°/dv - 2C.v 5-25

and,

o0 2
A. = B.v - C.v 5-26
J j Jo Jo

Substitution of these coefficients into equation (5-19) yields the

roots of equation (5-20).

If the roots of a mode are not real and positive, then the curve

.fit for that mode fails. If one of the C. for the cubic equation is

zero then the approximate crossing for that mode may be found by using

the Newton-Raphson's method for finding the root, provided dp /dv is

not also zero, then,

v= v - i(di /dv) 5-27

It was noted previously that the flutter velocity is computed

from the relation,

Vf (j) -1/2 5-2
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Since the flutter velocity is computed from the predicted root v.,
J

then the flutter velocity will be correct only if the corresponding

2X. value is used. The values of Xj = 1/. at the crossings may be
J

estimated from the first three-terms-of--the Taylor expansion of Xj,

then

Sj X + (v- o ) dXdv + 0.5(v-v o ) 
2 X /dv2  5-28

From the cubic and quadratic fit only the positive roots which also

have positive slope dj./dv at the crossings, will approximate the
J.

lowest flutter velocity.

A simplified flow diagram for the curve fitting flutter analysis

is shown in Figure 8. Following Figure 8 it is seen that an initial

value of v = vo, M, and some tolerance e are assigned. The quantity

v = v /M is then calculated which will cause the cubic fit to have a

negative slope near the origin. The imaginary parts of the eigenvalues

30 *tj are then computed at v for all n modes. Vf = 10 and v = 0 are

the upper and lower limits of the flutter velocity and the v value,

respectively. It should be noted that each mode of oscillation n is

checked for a crossing of .j and a critical velocity is computed for

each crossing. The velocities which are computed from the predicted

crossings and the approximate value of Xj (from Taylor's expansion)

are compared to find the smallest velocity, which is then set as the

new upper limit Vf. The flutter velocity Vf predicted from the

initial assumed value v is then compared with the velocity

00V 0 v 5-29
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If the absolute value of (V - V ) is greater than some smallIf the absolute value of (V 0

--aumber E, then the computations are repeated with v set equal to
0

the predicted crossover value of v which corresponds to the

lowest critical velocity Vf computed. If a positive crossing with.

positive slope d~j./dv is not predicted then v = 0 will terminate

computations. Also if the number of flutter iterations, for which

there is no convergence, exceeds some number (e.g. 5), then computa-

tions are terminated.

Examples

The data for equation (4-10) were generated for the cantilevered

box beam (Figure 9) where the design parameters were those listed in

Table III. A digital computer program was written which implemented

the flutter velocity solution previously explained.

Case I will be considered as the minimum set of parameters (P(1) =

PMIN(I)) and Case 2 as the minimum set of parameters times six

(P(I) = PMIN(I) x 6). For the minimum set of parameters an initial

value of v = 1 was assumed and the program found a flutter velocity

of 715.6 feet per second at v = 7.907 feet per radian, and for e

equal to 0.05.. The computations of the flutter velocity were repeated

for values of vo = 2, 3, 4, ... , 20. In each case the program con-

-verged to a flutter velocity between 715.6 and 716.3 feet per second.

The total time for the twenty flutter velocity calculations was

245.53 seconds or an average of 12.276 seconds per flutter velocity
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START )

Assign =Vo/M Compute V =10

Vo, M,E H . j=l to n "= 0

Compute
d2 /d_ 2 No Is

, d , d dV V (f

Yes

DO j= I to n " Do loop Vf=V -112
VO = ( )

o o 0

Compute real positiveV for =- V
crossing ofW j for which the pre-
dicted dpj/dVis greater than 0.
If none exist go to continue. Continue

o +V -Vo Yes
1Co o iV

-l 2 I
VF= V F r fv es

==0

No ST
'V =0

Figure 8. Simplified Flow Diagram for Curve Fitting Analysis.



49

computation. From Table I it is seen that the maximum number of

iterations to find the flutter velocity is five. For initial values

of Vo equal to 7.0 and 8.0 the algorithm converged to an answer in

two and one iterations respectively.

The flutter velocity analyses were repeated for design parameters

of Case 2 in a similar manner. The total time for twenty flutter

calculations was 210.83 seconds, or an average of 10.54 seconds per

-flutter velocity analysis. From Table II it is seen that for

assumed vo values of 9, 10, and 11 that the algorithm converged to

the answer on the first attempt. The average.time for a flutter

-velocity analysis iteration for Casesl and 2 was 3.91 seconds. All

computations were performed by an IBM 360, Model 50 digital computer..

Figures 12-35 show the actual computed @. versus v curves and

the approximation of each curve as generated from the algorithm.

The assumed values of vo = 5.0 and v = 9.0 were used for Case 1 and

Case 2 respectively. These values (vo) were chosen since they lay

between the crossings of different modes. Also, individual graphs

are shown since in many cases the cubic or quadratic fit would lie on

top of the computed curve for the majority of v values given.

Tables V-VII give the numerical values of the plotted curves and

the computed airspeed V for the reader to see a numerical comparison

between the computed curve and the approximation..
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Table I. Convergence for Twenty Assumed Values of
v for Case L.

Assumed Predicted Predicted Predicted
Value. RoQt Velocity Mode

v o  v Vf n

1.0 9.278 869.2 2

7.762 701.5 3

7.907 715.6 2

2.0 6.097 554.2 2

7.416 659.0 2

7.911 714.8 2

7.906 715.6 2

3.0 5.641 500.7 2

7.089 627.0 2

7.885 710.2 2

7.906 715.6 2

4.0 5.952 523.9 2

7.326 649.7 2

7.911 714.4 2

7.906 715.6 2

5.0 6.611 582.3 2

7.742 692.5 2

7.908 715.7 2

6.0 7.374 654.1 2

7.916 715.1 2

7.906 715.6 2
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Assumed Predicted Predicted Predicted
Value Root Velocity Mode

v0  v V nof

7.0 7.886 709.3 2

7.906 715.6 2

8.0 7.907 715.6 2

9.0 9.000 1328.0 3

8.006 724.9 2

7.907 715.6 2

10.0 7.596 689.0 3

'7.915 716.0 2

11.0 7.268 664.5 3

7.928 715.5 2

7.906 715.6 2

7.080 653.7 3

7.926 713.7 2

7.906 715.6 2

13.0 7.060 658.7 3

7.931 723.9 2

7.906 715.6 2

14.o . 7.168 675.4 3

7.941 715.9 2

7.906 715.6 2

15.0 7.367 700.3 3

7.937 717.0 2

7.906 715.6 2
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Assumed Predicted Predicted Predicted
Value Root Velocity Mode
v V* V no f

16.0 7.628 730.9 3

7.917 716.3 2

17.0 4.827 471.7 4

6.569 575.9 2

7.861 701.5 2

7.906 715.6 2

18.0 5.009 494.3 4

-6.725 589.6 2

7.933 709.8 2

7.906 715.6 2

19.0 5,209. 518.8 4

6.094 605.4 2

7.979 716.2 2

7.907 715.6 2

20.0 5.422 544.8 4

7.099 623.1 2

7.987 719.2 2

7.907 715.7 2
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Table 11. Convergence for Twenty Assumed Values of
v for Case 2.

Assumed Predicted Predicted Predicted
Value Ro2 t Velocity Mode

o f n

1.0 33.17 9836.0 5

4.39 352.4 2

13.63 1180.0 2

8.99 793.7 2

10.15 870.4 2

2.0 7.28 .2633.0 5

10.34 892.2 2

10.16 870.1 2

3.0 28.96 2126.0 2

4.28 373.3 2

13.74 1195.0 2

8.91 787.7 2

10.15 870.5 2

-4.0 14.63 1270.0 2

8.04 755.2 2

10.19 876.7 2

10.16 870.1 2

5.0 11.94 1049.0 2

9.95 857.3 2

10.16 870.1 2
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Assumed Predicted Predicted Predicted
Value Root Velocity Mode

o v* Vf n

6.0 10.87 948.9 2

10.14 868.8 2

7.0 10.38 899.2 2

10.16 870.0 2

8.0 10.18 876.9 2

10.16 870.1 2

9.0 10.14 870.2 2

10.0 10.16 870.1 2

11.0 10.12 868.2 2

12.0 9.93 856.0 2

10.16 870.0 2

13.0 9.47 826.0 2

10.15 869.8 2

14.0 8.75 774.7 2

10.14 870.8 2

10.16 870.1 2

15.0 7.89 708.9 2

10.17 877.7 2

10.16 870.1 2

16.0 7.12 644.0 2

10.28 892.9 2

10.16 870.1 2
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Assumed Predicted Predicted Predicted
Value Root Velocity Mode

v v Vf n

17.0 6.57 591.9 2

10.42 911.6 2

10.16 870.0 2

18.0 6.21 555.2 2

10.54 927.6 2

10.15 869.8 2

19.0 6.00 531.4 2

10.62 938.3 2

10.15 869.6 2

20.0 5.90 517.4 2

10.65 943.6 2

10.15 869.5 2
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Conclusions

For the two examples presented here the flutter velocity

analysis program always converged to an answer for values of v chosen

between I and 20 and did not show any tendency to diverge from the

solution, however, this does not guarantee that the method will be

reliable for all systems. It may be possible that some other type of

fit besides a cubTc or quadratic equation would give more accurate

results, but the former was used because of simplicity. The value of

M = 10 was used for the cases presented, but for some systems this

number may be either too large or too small and might yield a negative

slope from the origin.

It should be noted that the second derivatives of p. are not

needed unless the cubic equation fails to give a real positive value

of v, however, the computer program computed all of the second

derivatives even if they were not needed. Some computational time

--may be saved by computing only those values of d2i./dv 2 which are

needed. For the cases shown the cubic was used for four of the

six modes.

One problem that did not effect convergence for the cases

explained was that of "switching of the modes" for the pj values.

The subroutine which computes the eigenvalues arranges the eigenvalues

Xj in descending magnitude of the real part of the eigenvalue X..
J

This is done since the Xj values for a particular mode vary only

slightly as can be seen from Figure 10 or 11. The imaginary part of
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the eigenvalues j, however, for a mode may change from point to

point by a considerable amount. The ordering of the eigenvalues by

Xj, therefore, may cause the tj value computed from vo not to

correspond with the Jij value computed from v = v thus resulting in a

bad fit for the actual shape of that mode. From Figure 11 switching

is seen to occur for values of v = 3.0 and v = 14.0.

It is the belief of the author that the flutter technique

presented here is a basically simple and efficient method for finding

the flutter velocity. For the designer with a feeling for the range

of v. values to try, this-method should be quite successful.
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APPENDIX A

Box Beam and Variable Parameters



Longitudinal

Rib

Skin

Bay no. i

L = 5 ft Web

H = 4 in.
W = b = 25 in. H

p= 5.46 slugs/ft3
E - 10.0 x 10 psi, modulus of elasticity

G = 4.0 x 106 psi, modulus of rigidity --

a = 2.5 in., distance of elastic axis from the midchord

Figure 9. Rectangular Box Beam and Properties
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Table III. Variable Parameters of Box Beam.

Case 1, P(I) = PMIN(1).

Bay Areas of Front and Back Top and Rib
No. Longitudinals Web Bottom Skin Thicknesses

(ft2 )  Thicknesses Thicknesses (ft)
(ft) (ft)

1 0.002315 0.001111 0.0005555 0.0005555

2 0.002315 0.001111 0.0005555 0.0005555

3 0.002315- 0.001111 0.0005555 0.0005555

Case 2, P(I) = PMIN(I) x 6.

Bay Areas of Front and Back Top and Rib
No. Longitudinals Web Bottom Skin Thicknesses

(ft2) Thicknesses Thicknesses (ft)
(ft) (ft)

1 0.01389 0.006667 0.003333 0.003333

2 0.01389 0.006667 0.003333 0.003333

3 0.01389 0.006667 0.003333 0.003333



APPENDIX B

Plots and Corresponding Tables of Computed

Curves and Cubic or Quadratic Fit
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Table IV. Real Part of the Eigenvalues
for Case 1.

MODE I MODE 2 MODE 3
ft/rad (xI03 ) (x104 ) (xl0 5)

1.0 1.13 0.50. 0.38

2.0 1.09 0.62 0.37

3.0 1.05 0.78 0.37

4.0 1.01 0.96 0.40

5.0 0.98 1.11 0.46

6.0 0.97 1.19 0.55

7.0 0.98 1.23 0.68

8.0 1.01 1.22 0.86

9.0 1.05 0.99 1.19

10.0 1.11 1.17 1.32

11.0 1.19 1.15 1.57

12.0 1.29 1. 14 1.85

13.0 1.49 1.14 2.15

14.0 1.54 1.14 2.47

15.0 1.69 1.14 2.82

16.0 1.86 1.14 3.19
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Table IV. Real Part of the Eigenvalues
for Case I.

v MODE 4 MODE 5 MODE 6
ft/rad (xl0 5) (x105) (xl0 6)

1.0 0.76 0.62 2.96

2.0 0.86 0.70 3.35

3.0 0.97 0.85 3.50

4.0 1.17 0.98 3.44

5.0 1.47 1.04 3.31

6.0 1.86 1.07 3.19

7.0 2.35 1.08 3.07

8.0 2.92 1.09 2.96

9.0 3.58 1.09 2.86

10.0 4.34 1.10 2.79

11.0 5.19 1.10 2.72

12.0 6.14 1.10 2.66

13.0 7.18 1.11. 2.61

14.0 8.32 1.11 2.57

15.0 9.57 1.11 2.53

16.0 10.90 1.12 2.50



SP (I) =PMIN (I) x, MODES 1-6

C3

o

'b.oo 2.00 LL.oo00 6.00 8.00 1.00 2. 00 t.o 00 1t.00

Figure 11. Real Part of the Eigenvalues for Case 2.
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Table V. Real Part of the Eigenvalues
for Case 2.

v MODE I MODE 2 MODE 3
ft/rad (xl04 ) (xl04) (x10 5 )

1.0 8.91 0.39 3.07

2.0 8.85 0.41 3.04

3.0 8.76 0.46 3.01

4.0 8.66 0.52 2.98

5.0 8.55 0.61 2.94

6.0 8.45 0.72 2.92

7.0 8.34 0.85 2.90

8.0 8.25 1.00 2.93

9.0 8.17 1.17 3.02

10.0 8.11 1.34 3.17

11.0 8.09 1.50 3.37

12.0 8.10 1.66 3.63

13.0 8.16 1.81 3.92

14.0 8.26 1.94 4.26

15.0 8.41 2.06 4.64

16.0 8.59 2.18 5.06
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Table V. Real Part of the Eigenvalues
for Case 2.

v MODE 4 MODE 5 MODE 6
ft/rad (x10 5 ) (x10o) (x106 )

1.0 0.49 0.58 2.36

2.0 0.53 0.58 2.51

3.0 0.59 0.57 2.77

4.0 0.67 0.56 3.16

5.0 0.77 0.57 3.59

6.0 0.91 0.61 3.88

7.0 1.06 0.67 -4.06

8.0 1.20 0.76 4.19

9.0 1.32. 0.86 4.29

10.0 1.41 0.98 4.39

11.0 1.49 1.12 4.47

12.0 1.56 1.28 4.54

13.0 1.61 1.46 4.60

14.0 1.66 1.67 4.65

15.0 1.72 1.87 4.69

16.0 1.77 2.10 4.72
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Table VI. Computed *1 and Quadratic Fit for
Case I and v 5.0.

v COMPUTED QUADRATIC COMPUTED
ft/rad CURVE v = 5.0 AIRSPEED

(xl03) (x10 3) ft/sec

0.0 0.0 +0.09 0.0

1.0 -0.15 -0.09 29.7

2.0 -0.32 -0.29 60.6

3.0 -0.51 -0.50 92.6

4.0 -0.73 -0.73 126.0

5.0 -0.97 -0.97 160.0

6.0 -1.23 -1.23 192.0

7.0 -1.50 -1.50 223.0

8.0 -1.78 -1.79 252.0

9.0 -2.07 -2.10 278.0

10.0 -2.36 -2.42 300.0

11.0 -2.66 -2.75 319.0

12.0 -2.96 -3.10 334.0

13.0 -3.27 -3.47 346.0

14.0 -3.58 -3.85 357.0

15.0 -3.90 -4.25 365.0

16.0 -4.22 -4.66 371.0
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Figure 14. 1 versus for Case 2.
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Table VII. Computed ¢1 and Quadratic Fit Values
for Case 2 and v = 9.0.

v COMPUTED QUADRATIC COMPUTED
ft/rad CURVE v = 9.0 AIRSPEED

(xlO 4)  (xlO ) ft/sec

0.0 0.0 -0.13 0.0

1.0 -0.25 -0.34 33.5

2.0 -0.51 -0.57 67.2

3.0 -0.82 -0.85 101.0

4.0 -1.15 -1.17 136.0

5.0 -1.52 -1.53 171.0

6.0 -1.92 -1.92 206.0

7.0 -2.36 -2.36 242.0

8.0 -2.83 -2.83 279.0

9.0 -3.34 -3.34 315.0

10.0 -3.89 -3.89 351.0

11.0 -4.47 -4.48 387.0

12.0 -5.09 -5.11 422.0

13.0 -5.72 -5.77 455.0

14.0 -6.37 -6.48 487.0

15.0 -7.03 -7.22 517.0

16.0 -7.69 -8.01 546.0
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Table VIII. Computed ~2 and Cubic Fit Values
for Case I and v = 5.0.

v COMPUTED QUADRATIC COMPUTED
ft/rad CURVE v = 5.0 AIRSPEED

(x10 4 x10 4) ft/sec

0.0 0.0 0.0 0

1.0 -0.13 -0.13 141

2.0 -0.23 -0.21 255

3.0 -0.29 -0.26 339

4.0 -0.28 -0.26 407

5.0 -0.21 -0.21 475

6.0 -0.13 -0.10 550

7.0 -0.06 +0.08 631

8.0 +0.01 0.33 724

9.0 0.08 0.65 906

10.0 0.15 1.06 925

11.0 0.23 1.57. 1030

12.0 0.29 2.16 1120

13.0 0.35 2.87 1220

14.0 0.41 3.68 1310

15.0 0.46 4.61 1400

16.0 0.51 5.66 1500
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Table IX. Computed *2 and Cubic Fit Values
for Case 2 and v = 9.0.

v COMPUTED CUBIC FIT COMPUTED
ft/rad CURVE v = 9.0 AIRSPEED

(xl0 5) (xl0 5) ft/sec

0.0 0.0 0.0 0

1.0 -0.24 -0.25 161

2.0 -0.50 -0.54 311

3.0 -0.77 -0.84 444

4.0 -1-.03 -1.11 554

5.0 -1.25 -1.33 641

6.0 -1.39 -1.44 708

7.0 -1.38 -1.41 759

8.0 -1.20 -1.20 800

9.0 -0.78 -0.78 832

10.0 -0.13 -0.12 864

11.0 +0.76 +0.83 898

12.0 1.83 2.11 931

-13.0 3.03 3.74 966

14.0 4.28 5.78 1010

15.0 5.54 8.24 1050

16.0 6.77 1.12 1080
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Table X. Computed 3p and Quadratic Fit Values
for Case l'and v = 5.0.

o

v COMPUTED QUADRATIC COMPUTED
ft/rad CURVE v = 5.0 AIRSPEED

4 4 ft/sec(xl0 (xl 04) ft/sec

0.0 0.0 +0.08 0

1.0 -0.05 -0.002 161

2.0 -0.11 -0.09 327

3.0 -0.18 -0.18 491

4.0 -0.27 -0.27 634

5.0 -0.36 -0.36 741

6.0 -0.45 -0.45 811

7.0 -0.54 -0.54 849

8.0 -0.65 -0.63 863

9.0 -0.92 -0.72 825

10.0 -0.96 -0.82 870

11.0 -1.14 -0.91 878

12.0 -1.34 -1.00 882

13.0 -1.54 -1.10 887

14.0 -1.75 -1.19 891

15.0 -1.98 -1.29 893

16.0 -2.21 -1.39 896
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Table XI. Computed * and Quadratic Fit Values
for Case 2 and v = 9.0.

v COMPUTED QUADRATIC COMPUTED
ft/rad CURVE v = 9.0 AIRSPEED

(x10 5) (l10 5 ) ft/sec

0.0 0.0 1.04 0

1.0 -0.08 0.78 180

2.0 - -0.18 0.50 363

3.0 -0.28 0.23 547

4.0 -0.40 -0.05 733

5.0 -0.55 -0.34 922

6.0 -0.73 -0.63 1110

7.0 -0.95 -0.91 1300

8.0 -1.21 -1.21 1480

9.0 -1.50 -1.50 1640

10.0 -1.80 -1.81 1780

11.0 -2.10 -2.11 1890

12.0 -2.39 -2.42 1990

13.0 -2.66 -2.73 2080

14.0 -2.93 -3.04 2140

15.0 -3.19 -3.36 2200

16.0 -3.44 -3.69 2250
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Table XII. Computed $4 and Cubic Fit Values
for Case 1 and v 5.0.

v COMPUTED CUBIC FIT COMPUTED
ft/rad CURVE v = 5.0 AIRSPEED

5 o 5 ft/sec(x105 ) (xO15) ft/sec

0.0 0.0 0.0 0

1.0 -0.14 -0.14 362

2.0 -0.34 .-0.33 690

3.0 -0.55 -0.56 964

4.0 -0.83 -0.84 1170

5.0 -1.15 -1.15 1300

6.0 -1.50 -1.50 1390

7.0 -1.87 -1.88 1440

8.0 -2.28 -2.29 1480

9.0 -2.70 -2.72 1500

10.0 -3.16 -3.18 1520

11.0 -3.63 -3.66 1530

12.0 -4.11 -4.15 1530

13.0 -4.61 -4.65 1530

14.0 -5.12 -5.17 1530

15.0 -5.63 -5.68 1530

16.0 -6.16 -6.21 1530
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Table XIII. Computed 4 and Cubic Fit Values
for Case 2 and vO = 9.0.

v COMPUTED CUBIC FIT COMPUTED
ft/rad CURVE v = 9.0 AIRSPEED

6 0 6 ft/sec
(xlO ) xlO )  ft/sec

0.0' 0.0 0.0 0

1.0 -0.30 -0.18 450

2.0 -0.59 -0.43 872

3.0 - -0.99 -0.68 1230

4.0 -1.34 -0.90 1559

5.0 -1.52 -1.02 1800

6.0 -1.50 -1.01 1990

7.0 -1.16 -0.80 2150

8.0 -0.48 -0.34 2310

9.0 +0.41 +0.41 2480

10.0 1.31 1.51 2660

11.0 2.12 3.02 2850

12.0 2.83 4.97 3040

13.0 3.43 7.44 3240

14.0 3.95 10.45 3440

15.0 4.39 14.08 3620

16.0 4.76 18.37 3800
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Table XIV. Computed l, and Cubic Fit Values
for Case l5and v = 5.0.

v COMPUTED CUBIC FIT COMPUTED
ft/rad CURVE v = 5.0 AIRSPEED

(x 60 ) (xl ) ft/sec

0.0 0.0 0.0 0

1.0 -1.37 . -1.31 400

2.0 -2.29 -2.01 755

3.0 -2.81 -2.19 1030

4.0 -2.15 -1.93 1280

5.0 -1.31 -1.31 1550

6.0 -0.63 -0.41 1830

7.0 -0.12 +0.70 2130

8.0 +0.25 1.92 2420

9.0 0.53 3.18 2730

10.0 0.72 4.40 3020

11.0 0.86 5.50 3320

12.0 0.96 6.40 3620

13.0 1.03 7.02 3900

14.0 1.08 7.28 4200

15.0 1.11 7.09 4500

16.0 1.13 6.38 4780
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Table XV. Computed 5 and Cubic Fit Values
for Case 2 and vo = 9.0.

v COMPUTED CUBIC FIT COMPUTED
ft/rad CURVE v = 9.0 AIRSPEED

(x10 ) (x106 ) ft/sec

0.0 0.0 0.0 0

1.0 -0.18 -0.31 414

2.0 -0.41 -0.66 830

3.0 -0.60 -1.06 1260

4.0 -0.93 -1.52 1680

5.0 -1.55 -2.02 2090

6.0 -2.32 -2.58 2430

7.0 -3.0& -3.18 2700

8.0 -3.81 -3.83 2910

9.0 -4.54 -4.54 3070

10.0 -5.27 -5.28 3200

11.0 -6.01 -6.08 3290

12.0 -6.78 -6.93 3350

13.0 -7.59 -7.82 3400

14.0 -8.43 -8.75 3430

15.0 -9.32 -9.74 3470

16.0 -10.30 -10.76 3490
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Table XVI. Computed 6 and Cubic Fit Values
for Case 1 and v = 5.0.

v COMPUTED CUBIC FIT COMPUTED
ft/rad CURVE v = 5.0 AIRSPEED

(xlO ) oxl0 ) ft/sec

0.0 0.0 0.0 0

1.0 -0.63 -0.58 581

2.0 - -0.88 -0.81 1090

3.0 -0.79 -0.83 1600

4.0 -0.70 -0.73 2160

5.0 -0.64 -0.64 2750

6.0 -0.60 -0.68 3360

7.0 -0.57 -0.95 4000

8.0 -0.54 -1.59 4650

9.0 -0.51 -2.69 5310

10.0 -0.49 -4.38 5990

11.0 -0.46 -6.78 6670

12.0 -0.44 -10.00 7360

13.0 -0.42 -14.20 8050

14.0 -0.40 -19.40 8730

15.0 -0.38 -25.70 9430

16.0 -0.36 -33.40 10100
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Table XVII. Computed 6 and Cubic Fit Values

for Case 2 and v = 9.0.

v COMPUTED CUBIC FIT COMPUTED

ft/rad CURVE v = 9.0 AIRSPEED

7 o 7 ft/sec
(x10 7 ) (x10 7 ) ft/sec

0.0 0.0 0.0 0

1.0 -1.43 -1.39 651

2.0 -2.84 -2.01 1260

3.0 -4.05 -1.99 1800

4.0 -4.48 -1.49 2250

5.0 -3.14 -0.64 2640

6.0 -0.70 +0.42 3050

7.0 +1.25 1.54 3470

8.0 2.56 2.59 3910

9.0 3.42 3.42 4350

10.0 3.95 3.90 4770

11.0 4.26 3.88 5200

12.0 4.40 3.22 5630

13.0 4.44 1.78 6060

14.0 4.41 -0.58 6490

15.0 4.33 -4.00 6930

16.o 4.22 -8.62 7360
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ABSTRACT

The established method for solution of the critical flutter

velocity of the equation of motion for an aircraft structure requires

a plot of i versus v where t is the imaginary part of the eigenvalue

of the flutter equation and v is the velocity divided by the

circular frequency of oscillation or the dependent variable of the

flutter equation. From this plot the crossover points, where is

zero, are sought from which the lowest or critical velocity, for

which the structure will have divergent oscillations, may be computed.

A curve fitting approach (which is rapid, simple, and direct in

comparison to established methods) has been developed to solve the

flutter equation for the critical flutter velocity.

The p versus v curves are approximated by cubic and quadratic

equations. The curve fitting technique utilized the first and

second derivatives of p with respect to v which are derived in the

text.

The method was tested for two structures, one structure being

six times the total mass of the other structure. The algorithm

never showed any tendency to diverge from the solution. The average

time for the computation of a flutter velocity was 3.91 seconds on an

IBM Model 50 computer for an accuracy of five per cent. For values of

v close to the critical root of the flutter equation the algorithm

converged on the first attempt. The maximum number of iterations for

convergence to the critical flutter velocity was five with an assumed

value of v relatively distant from the actual crossover.


